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1. Introduction

In order to make contact with low energy physics, the quest to find a realistic MSSM-

like string vacuum is one of the most important tasks for string phenomenology. In the

context of type II orientifolds there has been a huge amount of activity over the last years

to obtain a model that resembles the standard model as closely as possible.1 Since it is

believed that there exists a vast landscape of string vacua containing a huge number of

possible solutions [4, 5], new methods have to be used to analyse this tremendous realm.

Instead of studying individual solutions, it might be better to analyse an ensemble of

models using a statistical approach [5]. With statistical methods, one can try to answer

questions about the distribution of certain properties within the ensemble of solutions.

These distributions might give important insights into the overall shape of the landscape.

On the one hand, they could be a valuable guide for model building, giving hints where to

look for interesting solutions.2 Moreover, the issue of correlations of properties within the

ensemble of models is of great importance. Finding correlations implies that it might be

possible to deduce general aspects of the landscape, independent of specific models.

Dealing with statistics, there are several caveats not to be overlooked. One of them

concerns the finiteness of solutions [9]. If the ensemble to be analysed is not finite, the

possibility to make clear statements is greatly diminished, since one has to rely on properties

which appear in a regular pattern. The same applies for a random sample, which has to

be chosen with great care, in order to make it a representative subset of the full range of

solutions.

In [10] and [11] methods to analyse the open string sector of intersecting brane models

have been developed. In the second paper a survey of models on a T 6/(Z2×Z2) orbifold

was carried out using a computer based approach. This technique was also used to analyse

the statistics of standard-model-like as well as SU(5) and flipped SU(5) models on the

same orbifold in greater detail [12, 13] (for a summary of the results obtained for this

geometry see also [14]). In [15] a survey of standard model vacua including fluxes has been

accomplished for this background. An analytic proof of the finiteness of solutions to the

tadpole and supersymmetry constraints in the case of an T 6/(Z2×Z2) orbifold has been

given in [16]. Moreover a statistical analysis of Gepner model orientifolds was performed

in [17 – 19], and aspects of the heterotic landscape were discussed e.g. in [20, 21].

It is clear that the statistical analysis performed in the articles mentioned above for

the case of the T 6/(Z2×Z2) orientifold should be repeated for other background geometries

in order to see if these previous results are somehow generic and persist, or if they are

substantially different for other spaces. In this article we use similar methods as in the

works described above to analyse a different intersecting brane setup, namely the IIA

orientifold with intersecting D-branes on the T 6/Z6 orbifold. This class of models is also

interesting from a phenomenological perspective, since it has already been shown that one

can construct an intersecting brane model with three generations of quarks and leptons on

this space [22].

1For reviews on this topic see e.g. [1 – 3].
2For recent reviews on distributions on the landscape and counting of flux compactifications, see [6 – 8].
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There are many similarities to the T 6/(Z2 ×Z2) case, but we encounter some new

aspects as well. In particular, this background requires fractional branes, coming from

the Z2-twisted sector of the orbifold [23, 24]. As it turns out, these fractional branes are

essential for the properties of the low energy theory, in particular for the existence of chiral

matter. Moreover, due to the existence of the fractional branes the number of solutions to

the constraining equations is largely increased compared to the T 6/(Z2×Z2) case, and the

statistical distributions are also different.

In order to make statistical statements for the full parameter space, we use a new

method of analysis, based on the choice of random subsets of solutions.3 As emphasized

in [25], this has to be done very carefully, in order to obtain results that resemble the

actual frequency distributions as closely as possible, since “floating correlations” could

have the unwanted effect that certain observables are functions of the considered examples.

Fortunately, as we will show in this article, the results obtained in this way are indeed

sufficiently close to the full results to be trusted. We are confident that this method could

also be applied to different setups and, since it greatly reduces the amount of necessary

computations, might prove useful for subsequent surveys of the landscape.

1.1 Outline

This paper is organised as follows. In section 2 we will recall the geometric setup of T 6/Z6,

explain the orbifold and orientifold projections and describe the space of three-cycles.

Section 3 contains a discussion of the constraining equations from tadpole cancellation,

supersymmetry and K-theory. In section 4 we give an analytic proof of the finiteness of

possible solutions to the constraining equations. We explain our methods of statistical

analysis in section 5 and present the obtained results on the distribution of gauge sector

observables in section 6. In particular, we look for the frequency distribution of models

with a standard model gauge group and their chiral matter content. Finally we summarise

our results and give an outlook to further directions of research.

2. Geometry

In this section we will review the geometric setup of the T 6/Z6 orientifold and possible

D-brane configurations. We will use the notation and conventions of [22], to which we refer

for more details on the geometry and explicit derivations of some of the results we use in

the following.

2.1 Orbifold and orientifold projections

We assume a factorisation of the T 6 into three two-tori, described by complex coordinates

zi, i = 1, 2, 3, on which the orbifold group Z6 acts as

θ : zi 7→ e2πivizi,

3If not further specified in the text, we will use the term “solution” in this article to stand for a specific

model that fulfills the tadpole, supersymmetry and K-theory conditions, which will be given explicitly in

section 3.
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Figure 1: The three two-tori of the T 6/Z6 orbifold in the AAA-geometry. The fundamental cycles

of the T 6 are denoted by πi. The fixed points of θ3 on the first two T 2s, which are relevant for the

definition of exceptional cycles, are marked by dots. The third torus is invariant under θ3.

with the shift vector defined as ~vi = 1
6(1, 1,−2). There exists another possible action, often

denoted by Z
′
6, with a different shift vector (for a recent model building approach on Z

′
6

see [26]). We will not consider the Z
′
6 orbifold in this article, but plan to come back to it

in the future [27].

In addition to the orbifold group we introduce an orientifold projection, consisting of

the reflection of worldsheet parity Ω and an antiholomorphic involution R, which we choose

to be complex conjugation,

R : zi 7→ z̄i. (2.1)

In order for the orbifold and orientifold projections to be compatible, (2.1) has to be

an automorphism of the Z6 lattice. This allows for only two possible geometries of the

three two-tori, denoted by A and B. In the case of an A-geometry the torus lattice is

given by the root lattice of SU(3), spanned by {
√

2, (1 + i
√

3)/
√

2)}. The B-geometry,

which corresponds to a D9-brane with background-flux in the dual type IIB picture, can

be obtained from the A-case by a rotation of e−iπ/6.

Choosing different geometries for the three two-tori and considering only those com-

binations which cannot be obtained by trivially interchanging the first and second torus,

which transform in the same way under θ, we obtain six different possible setups, denoted

in the following by AAA,AAB,ABA,ABB,BBA and BBB.

2.2 Three-cycles

To wrap O6-planes and D6-branes on this geometry, we are interested in the number of

three-cycles, given by the third Betti number b3 = 2(1 + h2,1). According to [28] we have

h2,1 = 5, all coming form the orbifold-twisted sector. This leads in total to two bulk cycles

inherited from the six-torus and ten exceptional cycles, which wrap a combination of a

one-cycle on T 3 and a two-cycle around one of the Z3 fixed points. General three-cycles

will be a combination of bulk and exceptional cycles, but one has to keep in mind that only

those combinations are possible in which the bulk cycle passes through the fixed point in

question.

2.2.1 Bulk cycles

The factorisable bulk cycles can be defined in terms of a basis of fundamental one-cycles

on the three two-tori. For these we use the notation π2i−1, π2i for T 2
i , i = 1, 2, 3, as shown

– 4 –
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in figure 1. A basis for the bulk cycles can be defined as

ρ1 = 2
[

(1 + θ + θ2)π1 ⊗ π3 ⊗ π5

]

,

ρ2 = 2
[

(1 + θ + θ2)π2 ⊗ π3 ⊗ π5

]

, (2.2)

with intersection matrix given by

I
(ρ)
ij = ρi ◦ ρj =

(

0 −2

2 0

)

. (2.3)

Any bulk three-cycle can be expanded using the basis (2.2) as

Πa = Yaρ1 + Zaρ2. (2.4)

In terms of the wrapping numbers ni,mi of the fundamental one-cycles π2i−1 and π2i the

coefficients Ya and Za read

Ya = n1,an2,an3,a − m1,am2,am3,a −
∑

i

mi,amj,ank,a,

Za =
∑

i

mi,amj,ank,a +
∑

i

mi,anj,ank,a, i, j, k ∈ {1, 2, 3}cyclic.

From (2.3) and (2.4) one computes the intersections between two bulk cycles to be

Iab := Πa ◦ Πb = 2(ZaYb − YaZb).

The action of the involution (2.1) on the fundamental one-cycles of the two-tori for the

two possible geometries A and B is given by

A :

{

π2i−1
R→ π2i−1,

π2i
R→ π2i−1 − π2i,

B :

{

π2i−1
R→ π2i,

π2i
R→ π2i−1.

This leads to the following transformations of the bulk cycles (2.2) for the six inequivalent

geometries,

AAA : ρ1
R→ ρ1, ρ2

R→ ρ1 − ρ2,

AAB : ρ1
R→ ρ2, ρ2

R→ ρ1,

ABA : ρ1
R→ ρ2, ρ2

R→ ρ1,

ABB : ρ1
R→ ρ2 − ρ1, ρ2

R→ ρ2,

BBA : ρ1
R→ ρ2 − ρ1, ρ2

R→ ρ2,

BBB : ρ1
R→ −ρ1, ρ2

R→ ρ2 − ρ1.

(2.5)

To obtain the cycles wrapped by O6-planes we have to combine two orbits, invariant under

ΩRθ2k and ΩRθ2k+1, respectively. For the different geometries we obtain

ΠO6 =











AAA : 4ρ1, ABB : 6ρ2,

AAB : 4(ρ1 + ρ2), BBA : 4ρ2,

ABA : 2(ρ1 + ρ2), BBB : 4(−ρ1 + 2ρ2).

(2.6)

– 5 –
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2.2.2 Exceptional cycles

In addition to the three-cycles inherited from the six-torus we obtain additional, so-called

exceptional cycles, which wrap a product of cycles around the θ3-orbifold fixed points

(denoted by 1,2,3,4 in figure 1) and a one-cycle on T3. This situation is similar to the one

that has been encountered in the case of compactifications on T 6/Z4 in [29].

We can choose the following basis of exceptional cycles, invariant under the orbifold

projection,

ε1 = (e21 − e41) ⊗ π5 + (e41 − e31) ⊗ π6,

ε̃1 = (e31 − e41) ⊗ π5 + (e21 − e31) ⊗ π6,

ε2 = (e12 − e14) ⊗ π5 + (e14 − e13) ⊗ π6,

ε̃2 = (e13 − e14) ⊗ π5 + (e12 − e13) ⊗ π6,

ε3 = (e22 − e44) ⊗ π5 + (e44 − e33) ⊗ π6,

ε̃3 = (e33 − e44) ⊗ π5 + (e22 − e33) ⊗ π6,

ε4 = (e23 − e42) ⊗ π5 + (e42 − e34) ⊗ π6,

ε̃4 = (e34 − e42) ⊗ π5 + (e23 − e34) ⊗ π6,

ε5 = (e24 − e43) ⊗ π5 + (e43 − e32) ⊗ π6,

ε̃5 = (e32 − e43) ⊗ π5 + (e24 − e32) ⊗ π6, (2.7)

where we denoted the two-cycles stuck at the fixed points on T1 and T2 by eij , i, j = 1, . . . , 4

as shown in figure 1. The intersection matrix of these exceptional cycles is given by

I
(ε)
ij :=

5
⊕

k=1

(

ε̃k ◦ ε̃k ε̃k ◦ εk

εk ◦ ε̃k εk ◦ εk

)

=

5
⊕

k=1

(

0 −2

2 0

)

.

Under the action (2.1) of R the fixed points on the first two T 2s are mapped into each

other as follows,

A :















1
R→ 1,

2
R→ 2,

3
R↔ 4

B :















1
R→ 1,

2
R↔ 3,

4
R→ 4

It is possible to combine the bulk cycles (2.2) and exceptional cycles (2.7), includ-

ing their images under the orbifold projection, into an unimodular lattice of basic three-

cycles [22], which is an important consistency check for completeness of the symplectic

basis. Since this particular basis is not very convenient for computations, we will not use

it in the following.

3. Model building constraints

In addition to the O6-planes described by (2.6), we introduce k stacks of D6-branes, wrap-

ping fractional cycles. However, we would like to obtain supersymmetric models which

are stable and free of anomalies. Therefore the brane configuration has to fulfil several

constraining equations, which we will describe in the following.

– 6 –
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3.1 Tadpole cancellation

In order to obtain consistent models we have to make sure that the total charge of the RR

seven-forms in the compact space cancels. This imposes a condition on the cohomology

classes of these forms, which can be reformulated in homology. Denoting the orientifold

image of a cycle Πa wrapped by some brane a by Πa′ it reads

∑

a

Na (Πa + Πa′) − 4ΠO6 = 0. (3.1)

We can split the tadpole condition into two parts containing contributions from the bulk

and exceptional cycles, respectively. Since the orientifold planes wrap only bulk cycles

according to (2.6), the contributions from D-branes wrapping exceptional cycles have to

cancel among themselves.

Using the basis (2.4) and the transformation rules (2.5), we find for the six different

geometries the following conditions4 for k bulk branes with stack sizes Na,

AAA :
∑k

a=1 Na(2Ya + Za) = 16, ABB :
∑k

a=1 Na(Ya + 2Za) = 24,

AAB :
∑k

a=1 Na(Ya + Za) = 16, BBA :
∑k

a=1 Na(Ya + 2Za) = 16,

ABA :
∑k

a=1 Na(Ya + Za) = 8, BBB :
∑k

a=1 NaZa = 16.

(3.2)

3.2 Supersymmetry conditions

In order to preserve N = 1 supersymmetry, the bulk cycles have to be calibrated with

respect to the same calibration form as the orientifold planes. In our case of three-cycles,

this is the holomorphic three-form and this means that the cycles have to be special La-

grangian. Expressed in terms of the expansion coefficients (2.4) the conditions are given

by
AAA : Za = 0, ABB : Ya = 0,

AAB : Ya = Za, BBA : Ya = 0,

ABA : Ya = Za, BBB : 2Ya = −Za.

(3.3)

Since these conditions boil down to the fact that the bulk branes have to wrap the same

cycles as the O6-planes, we obtain the result that the intersection number between these

branes and the orientifold planes always vanishes,

IaO6 = Πa ◦ ΠO6 = 0. (3.4)

To exclude anti-branes from the spectrum, we have to impose one further condition,

AAA,AAB,ABA : Ya > 0, ABB,BBA,BBB : Za > 0. (3.5)

Fractional branes, being a combination of bulk and exceptional cycles, preserve half of the

supersymmetry, if the bulk part obeys (3.4) and (3.5), and the exceptional part comes from

fixed points that are traversed by the bulk cycle. In total there are 128 different possible

combinations of exceptional cycles for a given bulk cycle. All possible combinations can be

found in tables 23 and 24 of [22].

4These conditions can also be derived explicitly by computing open string amplitudes, see [22].

– 7 –
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3.3 K-theory constraints

In addition to the constraints from tadpole cancellation and supersymmetry, we have to

demand that the four-dimensional models are anomaly-free. Cancellation of local gauge

anomalies is guaranteed by a generalised Green-Schwarz mechanism, yet there exists the

possibility to obtain a global gauge anomaly [30], which can be deduced from a K-theory

analysis. In the case of our models, this condition requires an even amount of chiral matter

from Sp(2) probe branes, inserted in the geometric setup [31]. Sp(2) gauge groups are

carried by branes that are invariant under the orientifold action. Unfortunately this is not

the only possible gauge group for these branes, they can equally well support an SO(2)

group. To differentiate between these two, one has to go beyond the algebraic approach

that suffices to calculate the tadpole, the susy constraints and the chiral matter content.

It is necessary to analyse the open string Möbius amplitude for each possible brane.

Fortunately the geometrical setup of the Z6 orientifold is such that we do not have

to worry about this issue. In fact, it can be generally proved that all possible solutions

that fulfil the tadpole and susy constraints will automatically satisfy the stronger condition

where all possible orientifold-invariant probe branes are used. In this case we obtain the

following condition for a model with k stacks of branes,

k
∑

a=1

NaΠa ◦ Πp ≡ 0 mod 2, (3.6)

and this equation should hold for any probe brane p invariant under the orientifold map.

Because of this property and the fact that the bulk part of the probe branes does not

intersect with the bulk part of all other branes, several of the terms in (3.6) vanish and we

can rewrite it as
5

∑

i=1

(

k
∑

a=1

Nas
i
a

)

ri
p ≡ 0 mod 2, (3.7)

where the values si
a are the coefficients of the cycles of brane a which are odd under the

orientifold projection and the ri
p parametrise the cycles of the probe branes which are even

under the orientifold map. Note that we are summing over exactly half of the dimension of

the basis of exceptional three-cycles. However, not all of the ri
p are independent, since the

probe branes are bound to be on top of the orientifold planes. An explicit calculation shows

that there exist only eight different possibilities and that the coefficients ri
p are always even.

Therefore (3.7) is always fulfilled.

3.4 Open string spectrum

The massless chiral states arising at the intersection of different stacks of D-branes and at

the intersection of branes with their orientifold mirrors and the orientifold planes, can be

computed from the intersection numbers. In general a stack of N branes supports a U(N)

gauge group, unless the three-cycle wrapped by this stack lies on top of the orientifold

plane. In this case we are dealing with an SO(N) or Sp(N) group.

To compute the non-chiral spectrum, one has to analyse the open string amplitudes.

In our statistical analysis we will not do so, but concentrate on the chiral spectrum only.

– 8 –
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representations multiplicity

(Na,Nb) Πa ◦ Πb

(Na,Nb) Πa ◦ Π′
b

Syma
1
2 (Πa ◦ Πa′ − Πa ◦ ΠO6)

Antia
1
2 (Πa ◦ Πa′ + Πa ◦ ΠO6)

Table 1: Multiplicities of the chiral spectrum.

particle representation multiplicity

QL (3,2)0,0 + (3,2)0,0 Iab + Iab′

UR (3,1)−1,0 + (3,1)0,−1 Ia′c + Ia′d

DR (3,1)1,0 + (3,1)0,1 Ia′c′ + Ia′d′

L (1,2)−1,0 + (1,2)0,−1 + (1,2)−1,0 + (1,2)0,−1 Ibc + Ibd + Ib′c + Ib′d

ER (1,1)1,1 Icd

NR (1,1)1,−1 Icd′

Table 2: Realisation of standard model particles with four stacks of branes. The notation in the

second column gives the representation under SU(3) and SU(2) in brackets with the charges under

the U(1)s of the third and fourth stack as subscripts.

As shown in table 1, we obtain chiral matter in a bi-fundamental representation at the

intersection of two stacks a and b with Na and Nb branes, respectively. In addition there

is the possibility for each stack to contribute matter in the symmetric and antisymmetric

representations of the gauge group. From the discussion in section 3.2 it follows that the

amount of symmetric and antisymmetric representations will always be the same, since

there can be no contribution from the intersection with the orientifold planes. Moreover,

it is crucial to work with fractional cycles, since all bulk cycles that occur lie on top of the

orientifold plane and do hence not intersect which each other.

3.5 Embedding of the standard model

Since our final goal is to quantify the number of standard model-like vacua that can be

found in this type of compactifications, we have to chose a way to realise the gauge group

and chiral matter content of the MSSM in terms of intersecting branes. In the present

work we will consider only one type of embedding, mainly for two reasons. One is given

by external constraints on computational power and feasibility. The second one lies in the

special properties of the orbifold we are investigating. Since we saw in the previous section

that the amount of symmetric and antisymmetric representations is always equal, several

possible constructions of standard model spectra that use antisymmetric representations

of SU(2) cannot be realised, unless one also allows for chiral matter in the symmetric

representation, which is not desirable from a phenomenological point of view.

The construction we will use in section 6.5 for the analysis of the frequency distribution

of standard models is well-known and has been used in many model building approaches

of intersecting branes. It consists of two stacks of branes (a and b) with gauge groups U(3)

– 9 –



J
H
E
P
0
5
(
2
0
0
7
)
0
1
8

and U(2), and two branes (c and d) with a U(1) group. The standard model spectrum is

realised through chiral matter transforming in bifundamental representations of the gauge

groups. The complete spectrum and the assignment to particles is given in table 2.

The hypercharge QY is realised in this construction as a combination of the U(1)

charges Qi, with i = {a, b, c, d} of the four branes. Explicitly it is given by

QY =
1

6
Qa +

1

2
Qb +

1

2
Qc.

4. Finiteness of solutions

An important question that we would like to answer before analysing the four-dimensional

models in detail concerns the finiteness of possible solutions to the constraining equations

outlined in section 3. To answer this question, it is sufficient to analyse the solution space

of the system of equations (3.2) and (3.3). We do not have to take the analogue expressions

for the exceptional cycles into account, although the set of solutions is greatly enhanced

by models containing exceptional cycles, because the number of possible combinations of

these cycles is always finite (cf. section 3.2). The K-theory constraints will play no rôle

anyway, as has been argued above.

One important drawback of our approach has to be mentioned here. We cannot make

any statement about the dependence of the number of solutions on the complex structure

moduli.5 The complex structures of the three two-tori are fixed by the requirement to be

compatible with the orbifold projection. Since h2,1 = 5, we find ten complex structure

moduli in the twisted sector. We do not analyse the blow up of the orbifold singularities

and can therefore not make any statements about the behaviour of our models away from

the orbifold point. Having said this, we will continue to prove that there is only a finite

number of models at this point in moduli space.

After the susy conditions are fulfilled, we are left with one tadpole condition for each

possible geometry, according to (3.2). It will contain one unknown wrapping number (Y

or Z, depending on the geometry), which is always positive according to (3.5). Therefore

it follows trivially that the remaining unknown in the tadpole equations is bounded from

above by the orientifold charge, which also depends on the geometry, but will never be

greater than 24. To proof the finiteness of the number of models, it remains to be shown

that the possible combinations of wrapping numbers {ni,mi}, which make up Y and Z

according to (2.5), are always finite.

In the following we will give an explicit proof for the AAA-geometry, the other five

possibilities can be treated analogously. In order to simplify the discussion and reflect the

symmetries of the problem, we define new variables for the wrapping numbers on the first

5Concerning this point the present case differs from the Z2×Z2-case considered in [16]. On the one

hand this is an advantage, because it makes the proof of finiteness in the Z6-case less involved since no free

parameters besides the brane wrapping numbers appear in the constraining equations. On the other hand

we lose a great deal of generality that can only be regained by a proper analysis of the open string moduli

space of the exceptional cycles – an issue that is beyond the scope of this work.
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two tori, while keeping the wrapping numbers on the third torus explicit.

α := m1m2 + n1m2 + n2m1,

β := n1n2 + n1m2 + n2m1. (4.1)

Exchanging the first two tori, which is a symmetry of the geometric setup, will leave α and

β invariant. In terms of α, β, n3,m3 (3.3) reads

Z = n3α + m3β = 0. (4.2)

Since we know from (3.5) that Y has to be positive, one stack of branes has to contribute

a finite value 0 < T < 16 to the tadpole constraint. This amounts to a second equation,

Y = n3(β − α) − m3α = T. (4.3)

To analyse the possibility of an infinite set of solutions to (4.2) and (4.3), we have to

distinguish between the cases n3 = 0 and n3 6= 0.

n3 = 0: Since n3 and m3 cannot vanish simultaneously, we get from (4.2) that

β = n1(n2 + m2) + n2m1 = 0. (4.4)

and from (4.3) we obtain

−m3α = −m3 (m2(m1 + n1) + n2m1) = T. (4.5)

An infinite number of solutions can only exist, if there is an infinite series of solutions to

β = 0 or α = const. Both cases can be treated analogously, so let us pick one of them and

examine β = 0. Again we analyse two cases, depending on the value of n1. If n1 = 0, we

get from (4.4) that n2 = 0 and (4.5) reads −m1m2m3 = T , which puts bounds on {mi}.
If n1 6= 0, we can rewrite (4.4) as

m2 = −n2

n1
(n1 + m1) .

Substituting this into (4.5) leads to

m3n2

n1

(

n2
1 + m2

1 + n1m1

)

= T.

To obtain an infinite series, the expression in brackets would have to have an infinite

number of solutions. This is not possible, since the term always defines an ellipse, which

supports only a finite number of integer-valued points.

n3 6= 0: In this case we can rewrite (4.2) as

α = −m3

n3
β. (4.6)

Substitution in (4.3) leads to

(

n3 + m3 +
m2

3

n3

)

β = T. (4.7)
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The expression in brackets defines again an ellipse and can have only a finite number

of solutions. The remaining possibility would be that there exists an infinite series to

β = n1n2 + n1m2 + n2m1 = const.

Let us analyse the different possibilities for {n1,m1, n2,m2}. If n1 or n2 are zero,

we can see immediately that an infinite series is impossible. If m1 vanishes instead, we

obtain n1(n2 + m2) = const. If there should exist an infinite series, n2 and m2 have to be

unbounded. Using the definition (4.1) we deduce that α = n1m2 has would be unbounded

as well. This is only consistent with (4.6) if m3 would grow beyond all bounds, which is in

contradiction to (4.7). The argument can be repeated analogously for m2 vanishing.

So we are left with the case of n1, n2,m1,m2 all non-vanishing. In this situation we

can rewrite β as

n1n2

(

1 +
m2

n2
+

m1

n1

)

= const,

which can have only an infinite number of solutions, if m2n1 = −m1n2 with m1,m2 un-

bounded. But in this case we find α to be unbounded, which is not possible with β bounded

at the same time. This completes the proof that there can only be a finite number of so-

lutions to the tadpole and supersymmetry conditions.

5. Methods of analysis

In the following we describe the computational methods we used to obtain an ensemble

of solutions to the tadpole, supersymmetry and K-theory conditions. The results of the

statistical analysis are based on this explicitly calculated ensemble.

5.1 Choice of basis

It turns out that it is convenient to use a different basis of three-cycles for the computational

analysis, because it makes the tadpole conditions (3.1) for the bulk cycles and exceptional

cycles more uniform. The basis consists of R even cycles ηi and R odd cycles λi, i = 0, . . . , 5,

which are given in terms of the basis of bulk cycles (2.2) and exceptional cycles (2.7) for

the different geometries as6

~η =
1

2



































AAA : (ρ1,−ε1 + 2ε̃1,−ε2 + 2ε̃2,−ε3 + 2ε̃3, ε̃4 − ε5 + ε̃5, ε4 − ε5),

AAB : (ρ1 + ρ2,−ε1 + ε̃1,−ε2 + ε̃2,−ε3 + ε̃3, ε4 − ε̃5,−ε̃4 + ε5),

ABA : (ρ1 + ρ2,−ε1 + 2ε̃1, 2ε2 − ε̃2,−ε5 + 2ε̃5, ε̃3 − ε4 + ε̃ + 4, ε3 − ε4),

ABB : (ρ2,−ε1 + ε̃1, ε2,−ε5 + ε̃5, ε3 − ε̃4,−ε̃3 + ε4),

BBA : (ρ2, 2ε1 − ε̃1, 2ε2 − ε̃2, 2ε3 − ε̃3, ε̃4 − ε̃5, ε4 − ε̃4 + ε5),

BBB : (−ρ1 + 2ρ2, ε1, ε2, ε3,−ε4 + ε̃4 − ε̃5, ε4 + ε5),

(5.1)

6Note that in comparison to tables 6 and 7 in [22] we use a slightly different notation. Due to a sign

error the cycles ηI and χI in the notation of that article have to be exchanged for I = 1, . . . , 5 (cf. the

erratum on p. 33). This we take into account and moreover we will use λ instead of χ.
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and

~λ =
1

2



































AAA : (−ρ1 + 2ρ2, ε1, ε2, ε3, ε4 + ε5,−ε̃4 − ε5 + ε̃5),

AAB : (−ρ1 + ρ2, ε1 + ε̃1, ε2 + ε̃2, ε3 + ε̃3,−ε̃4 − ε5,−ε4 − ε̃5),

ABA : (−ρ1 + ρ2, ε1,−ε̃2, ε5, ε3 + ε4,−ε̃3 − ε4 + ε̃4),

ABB : (−2ρ1 + ρ2, ε1 + ε̃1, ε2 − 2ε̃2, ε5 + ε̃5,−ε̃3 + ε4,−ε3 − ε̃4),

BBA : (−2ρ1 + ρ2,−ε̃1,−ε̃2,−ε̃3, ε4 − ε5 + ε̃5,−ε̃4 − ε̃5),

BBB : (−ρ1, ε1 − 2ε̃1, ε2 − 2ε̃2, ε3 − 2ε̃3, ε4 − ε5,−ε̃4 + ε5 − ε̃5).

(5.2)

The expansion of a three-cycle in terms of this basis reads

Πa = ~r · ~η + ~s · ~λ =
5

∑

i=0

(

ri
aηi + si

aλi

)

,

with expansion coefficients ri, si, i = 0 . . . 5. The tadpole equations are given by

∑

a

Na~ra = 4~rO6, (5.3)

The zeroth entry of ~rO6 can be read off from (3.2), while all others have to vanish, since

the orientifold planes do not contribute to the tadpole equations of the exceptional cycles.

In terms of this new basis the intersection between two stacks of branes a and b defined

by cycles Πa and Πb reads

Iab = Πa ◦ Πb =
1

2
(~sa · ~rb − ~ra · ~sb) . (5.4)

5.2 Algorithm

To obtain a large number of models that fulfil the constraining equations, we used several

computers to generate the solutions, which were subsequently stored in a database for later

analysis. A priori no constraints have been imposed on the models besides being consistent

solutions to the tadpole and supersymmetry conditions.

As mentioned before, the model building constraints described in section 3 can be

treated separately for bulk and exceptional cycles. The first part of the computer program

we use, which searches for pure bulk configurations, employs the partition algorithm used

in [11] to find all possible realisations of the left hand side of equation (5.3). Subsequently

it runs through a certain range of pairwise coprime wrapping numbers searching for groups

(ni,mi), i = 1, 2, 3 that yield the desired r0 values. Care has to be taken to avoid multiple

counting of cycles which are identified under the orbifold or orientifold action. Explicitly,

two of the wrapping numbers are restricted to be always > 0 and the wrapping numbers

on the third torus, (n3,m3) have been chosen to be both odd. In this way no double

counting of solutions which are related by a geometric symmetry of the problem will occur.

Subsequently the program checks the bulk supersymmetry conditions (3.3) and (3.5), which

amount to ra > 0, s0
a = 0 in the notation introduced above. Finally one finds configurations

of bulk cycles, which fulfil all consistency conditions, by combining the results of the

previous steps.
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According to tables 23 and 24 in [22] 128 exceptional cycles, which already satisfy the

supersymmetry conditions, arise for one single bulk cycle. The second part of our program

runs through all 128k possible combinations of exceptional cycles for a bulk configuration

with k stacks and checks the exceptional tadpole conditions explicitly. Unfortunately there

is no way to exclude part of these 128k combinations a priori and we have no choice but to

compute every single one of them in order to perform a complete analysis. As a consequence

the time necessary for the computation scales exponentially with the number of stacks and

could reach the realm of years or even decades. In the following we will thus only present

full statistics for models with a low number of stacks. For configurations with a higher

number of stacks we randomly select a fraction of the 128k possible combinations. As we

will argue in the next section, these randomly chosen subsets can be trusted to resemble the

full statistical distributions and are therefore sufficient to make statements about frequency

distributions of gauge group properties and chiral matter content.

6. Results

In the following we present the results of a statistical analysis of the ensemble of solutions

to the tadpole, supersymmetry and K-theory constraints, which have been computed as

outlined in the last section.

As already mentioned before, a full analysis of all possible models is as yet impossible.

This comes from the simple fact that the total number of solutions is of the order 1028, as

we are going to show in the following, and an explicit computation of every single solution

is beyond reach of contemporary computer technology. Therefore we used the technique of

choosing random subsets of possible solutions which in turn were analysed in detail. As it

turns out this method is perfectly sufficient for a statistical analysis.

After a more detailed explanation of this random method, we discuss the total number

of solutions. Then we turn to discuss frequency distributions of various properties of the

models, in particular the gauge group factors, the total rank and the chiral matter content.

Finally we look for solutions that realise the gauge group of the standard model, discuss

their suppression within the set of all solutions and the properties of the hidden sector

gauge group.

Along the way we compare the results with an analysis of Z2×Z2 models. We only

cite the relevant results here, a summary of the statistical analysis that has been done in

that case can be found in [14].

6.1 Choosing random subsets

The most time-consuming part of computing full solutions is given by adding exceptional

cycles to configurations of bulk cycles that already fulfil the tadpole condition. As explained

in section 5.2, the bulk solutions are obtained using a fast partition algorithm, while for the

exceptional part there is no other way then to run through all 128k possible combinations

and check if they fulfil the constrains. This algorithm clearly scales exponential with the

number of stacks k, such that a complete survey of models with more then three stacks is

not feasible.
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22
42
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142

Figure 2: The number of solutions for different numbers of stacks and sizes of the random sample.

Nevertheless, as we will explain shortly, we are able to derive quite robust statistical

statements about the full set of solutions. To do so, we apply a procedure to obtain random

subsets of the 128k possible ways to add exceptional cycles to a bulk solution. If the total

number of solutions is large enough, it is possible to assume a linear dependence between

the size of the sample s and the number of solutions n(s). Moreover, the gradient can be

used to compute the total number of solutions ntot(k) for a given stack size, if we assume

that this number scales with 128k.

To summarise, we assume that the following equation holds approximately,

ntot ≈
n(s)

s
128k. (6.1)

In figure 2 the number of solutions for different numbers of stacks and sizes of random

samples is shown. Although not clearly visible in this three dimensional plot, the number

of solutions grows indeed linearly with the size of the random sample. The accuracy of

the linear fit increases with the number of stacks. According to (6.1), the slope of the

logarithmic plot gives the average number of full solutions per bulk configuration, which

varies between 102 for the two-stack models and 4.3× 104 in the case of models with eight

stacks.

Using the exact results in the two- and three-stack case we can compare the total

number of solutions with the estimated result from the random procedure. The results

of this comparison are shown in table 3. It turns out that the estimate is correct up to
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stacks exact estimate error

2 1.7068 × 106 1.7079 × 106 < 7 × 10−4

3 3.9816 × 108 3.9818 × 108 < 6 × 10−5

Table 3: Exact number of solutions and estimated values for models with two and three stacks of

branes and the relative error of the estimate.

an error smaller then 0.7h in the case of models with two stacks and even an order of

magnitude less in the case of three stacks. Although we cannot completely rule out that

something dramatically different happens for models with a larger number of stacks, this

seems very unlikely. Our results rather suggest that on the contrary one might conjecture

that the estimate gets better for larger stack size k. This can be justified given that the

deviation from linearity in the scaling gets smaller for larger k.

It can therefore be expected that the results obtained using the random method are

sufficient for a statistical analysis and that we are allowed to extrapolate the frequency dis-

tributions obtained for a random sample to the full set of solutions using the relation (6.1).

However, it should be emphasised that a good approximation of the number of solutions

is not enough to obtain an accurate description of the properties of the models. Therefore

we always perform a check for each distribution against the models with two and three

stacks to see if the frequency distributions of the complete solution and the extrapolated

distributions from the random samples do agree. In particular for properties of the gauge

group we expect the method to work very well, since the gauge group factors depend on

the bulk configuration only.

6.2 Total number of solutions

In order to make statistical statements about the probability of certain properties of so-

lutions, it is certainly important to know about how many solutions we are talking. In

figure 3 the number of solutions depending on the number of stacks is given. The left

figure shows the number of solutions to the bulk equations alone, not including exceptional

cycles, while the right figure contains the full result of consistent models. The minimum

number of stacks is two in both cases, while the maximum is twelve, which can be deduced

immediately from the tadpole equations (5.3). Remember that all variables are positive

and the maximum value of the right hand side is 24, while the wrapping number on the

left hand side is always a multiple of two.

Let us begin with an analysis of supersymmetric solutions to the bulk part of the

tadpole conditions (3.2) alone. Note that these configurations are just an intermediate

step to a full solution, since we need to include exceptional cycles to obtain consistent

models. Nevertheless it is an interesting question to ask how many solutions of the bulk

equations exist, since this gives an overview of the number of candidate solutions to the full

tadpole and susy constraints. As explained above, we will have to consider 128k possibilities

of configurations of exceptional cycles for each bulk solution.

As one can deduce from figure 3a, the maximum number of solutions of possible bulk

cycles is obtained for models with 8 stacks. In principle one would assume that the number
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Figure 3: Logarithmic plot of the total number of solutions to the tadpole equations. The left

plot (a) shows only bulk solutions, while the right one (b) show the full set of solutions, including

exceptional cycles.

of possible configurations grows dramatically with the number of stacks, since naively the

number of models with k stacks should be proportional to the number of factorisations of

integer partitions of length k. However, the negative contribution of the orientifold planes

to the tadpole equation is different for the six possible geometries. For the AAA, AAB,

BBA and BBB cases we get a total contribution of 16, while in the AAB and ABB cases

we obtain 8 and 24, respectively. Keeping in mind that there is a factor of two on the left

hand side of (3.2) and that all brane contributions are positive, one finds that the condition

for models with AAB geometry can only be fulfilled if the number of stacks is smaller then

five. In the case of AAA, AAB, BBA and BBB models with a maximum of eight stacks

are possible. This explains the relatively small contributions for models with more then

eight stacks.

After completing the models with exceptional cycles, the picture changes quite a bit.

This is due to the aforementioned fact that there are in principle 128k possible configura-

tions of exceptional cycles for each bulk configuration. Not all of them are consistent, in the

sense that they fulfil the full tadpole equations (5.3), but as we have shown in section 6.1

the total number of solutions scales precisely with this number, multiplied by a coefficient

of order 102 to 104. This explains the domination of models with twelve stacks, that can

be seen in figure 3b. As we will see in the following, this dominance of models with large

stack numbers has a large impact on the statistical distributions.

Using the randomly generated solutions for all possible numbers of stacks we can

compute the total number of models to be 3.43 × 1028 ± 1%. Since the linearity of the

growth of solutions increases with large numbers of stacks, we can estimate the error in

this calculation to be smaller then the relative error calculated explicitly for the two stack
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Figure 4: Relative contributions of the different geometries to the full set of solutions for models

with three stacks. The right figure (b) shows the relative error between the random solutions for

different stack sizes and the full set of solutions. The stacks sizes are 4, 16, 64, 256, 1024, 4096 and

16384 (from left to right).

models in the last section.

To complete the picture, we analyse the individual contributions of the different ge-

ometries. This will also serve as a test of the random method that we used to obtain the

statistical distributions. As can be seen in figure 4a, the largest contribution comes from

the BBB geometry. Concerning the relative error we make using the random method, it

is found to be sufficiently small. As shown in figure 4b, already at a random sample size of

64 out of 221 combinations of exceptional cycles, we obtain an error smaller then 1%.

6.3 Gauge groups

We consider two properties of the gauge group of the models, which consists of a product of

U(N), SO(2N) and Sp(2N) groups. Firstly we analyse the distribution of the total rank,

defined as

r :=
k

∑

a=1

Na. (6.2)

In a second step we discuss the probability to find one brane with a gauge group of rank N .

Both properties are obviously important to classify models which resemble the standard

model.

6.3.1 Rank distribution

The frequency distribution of the total rank, see figure 5a, grows exponentially and reaches

a maximum at rank 12. This behaviour can be explained by the dominance of models with

twelve stacks of branes. The exponential scaling of the total rank is directly related to
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Figure 5: Frequency distributions of (a) the total rank r and (b) the probability to find a gauge

group of rank N .

the exponential scaling of the total number of solutions, because these are dominated by

models with an U(1) gauge group. This follows from the solutions to the tadpole equations,

which are given as factorisations of partitions of the orientifold charge. The factor one is

not only the number with the highest abundance in integer partitions, but it is in fact the

only possible gauge group in models with twelve stacks of branes, as follows directly from

the positivity of all variables in the tadpole equation.

This rank distribution has to be considered with some caution however, since it includes

all possible U(1) factors of the spectrum. It is well known that some of the U(1)s will acquire

a mass in the effective theory. This could happen through a generalised Green-Schwarz

mechanism that compensates a mixed gauge anomaly involving the U(1) in question, but

more general cases are possible. It would be of course very interesting to study the rank

distribution that one obtains after subtracting the massive U(1) factors, but for the full

set of models the necessary computations are not feasible. In the analysis of models that

contain the gauge group of the standard model in section 6.5, we will make sure that at

least one massless U(1)Y (the hypercharge) exists, but a quantitative statement about the

number of massive U(1)s in the general case is beyond the means of our approach.

One striking fact of the rank distribution still has to be explained: There are only

solutions with even rank. This is a consequence of the specific Z6 geometry and different

from other orbifold models, as for example the Z2×Z2 models we already mentioned. To

show why this is always the case, we have to take a closer look at the tadpole equation (5.3).

The right hand side is always a multiple of 4, depending on the geometry. Therefore we

have to have
∑

a∈A

Sa ≡ 0 mod 4, with Sa := NaYa, A := {1, . . . , k}. (6.3)
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We split the sum over Sa into two parts, consisting of only even and only odd values:

∑

a∈A

Sa =
∑

a∈O

S(odd)
a +

∑

a∈E

S(even)
a , with O ∪ E = A, O ∩ E = ∅.

The equivalence (6.3) can only be fulfilled, if there is an even number of Sodd
a . Writing the

total rank (6.2) as

r =
∑

a∈A

Na =
∑

a∈O

Na +
∑

a∈E

Na, (6.4)

we get that the first part of this sum is even. Here we used that all branes in the set O

have to obey Na ≡ 1 mod 2, for S
(odd)
a ≡ 1 mod 2. For the second part of (6.4) to be

even, it is enough to show that Ya is always odd. This can be done by writing the wrapping

number in terms of the fundamental torus wrapping numbers, similar to what we did in

section 4. From

Y = n2(α − β) − m2(β) , Z = n2β + m2α = 0 (6.5)

and the constraints (n2,m2) ≡ (1, 1) mod 2, explained in section 5, we obtain from the

second equation in (6.5) that α ≡ β mod 2 and therefore Y ≡ 1 mod 2. This completes

the proof.

6.3.2 Gauge group factors

In figure 5b the probability to find a gauge group of rank N is shown. For the reason ex-

plained in the last paragraph, namely the abundance of U(1) gauge factors, the probability

to find one brane with gauge group of rank one is almost 100%. The distribution falls off

exponentially for larger N , which is again due to the exponential scaling of the number of

solutions with the number of stacks.

As in the case of the total number of solutions, we have obtained the distributions using

an extrapolation of results from random subsets. To check the validity of this approach,

we compare with the full set of models in the case of three stacks of branes. The result

is shown in figure 6. For both cases, the total rank distribution as well as the probability

distribution of single gauge factors, we obtain very accurate results. The relative error is

always smaller then 1h in both cases.

6.4 Mean chirality

To understand on a qualitative level how many of the solutions are chiral, we analyse the

“mean chirality” of the set of solutions. To do so, we define the mean chirality to be the

average of chiral representations in each model. This definition is identical to the one used

in the statistical analysis of Z2×Z2 orbifold models (cf. section 3.2.2 of [14]). For a model

with k stacks we define the mean chirality χ as

χ :=
2

k(k + 1)

k
∑

a,b=0
a<b

|Ia′b − Iab| =
2

k(k + 1)

k
∑

a,b=0
a<b

|~sa · ~rb| , (6.6)

where we used the definition of the intersection Iab in terms of the η, λ-basis (5.4).
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Figure 6: Comparison of the results for the distribution of (a) the total rank r and (b) the

probability to find a rank N gauge factor for models with three stacks of branes. The full result is

given by the red bars on the left, while the solutions obtained using a random set of 214 exceptional

cycles are shown as blue bars on the right. An upper bound on the relative error is given by the

value above each bar.

Before considering all random subsets, we have to make sure that the method can also

be trusted in this case, since we are asking a different question then in the case of gauge fac-

tors or rank distributions. The definition of the mean chirality (6.6) involves a summation

over intersection numbers. These depend very much on the choice of exceptional cycles, in

contrast to the properties of the gauge group, which depend only on the configuration of

bulk cycles.

In figure 7 we compare the distribution obtained from the full set of solutions for models

with three stacks of branes, including all 1283 = 221 possible choices of exceptional cycles,

shown in figure 7a, with different random subset-models, shown in figures 7b, 7c and 7d,

which take 64, 1024 and 16384 randomly chosen combinations of exceptional cycles into

account. Keeping in mind that the plots are logarithmic, one can see that the qualitative

behaviour of the full solution is already captured by the sample with only 64 randomly

chosen exceptional cycles, although we are losing a good deal of information about models

with chirality above 6. To obtain a quantitatively satisfying result, it is therefore necessary

to include a bigger subset of cycles. For the highest value of 214 random sets, we get a

distribution which differs from the complete result by an overall error smaller then 1 h,

comparable to the errors we found for frequency distributions of gauge group properties.

The inclusion of random samples of all possible stack sizes, weighted according to (6.1),

leads to a frequency distribution as displayed in figure 8a. Until a value of χ ≈ 2.8 the

contribution from models with more than eight stacks dominates. For these models the

chirality is smaller on average, since the AAB geometry, which allows for solutions with
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Figure 7: Frequency distribution of the mean chirality χ for models with three stacks of branes.

Shown are the full set of solutions (a) and three sets generated using randomly chosen subsets of

64 (b), 1024 (c) and 16384 (d) out of all 2097152 possible combinations of exceptional cycles.

high chirality is no longer possible.

The distribution is quite different from what has been found for the Z2×Z2 orbifold.

In that case a general scaling behaviour was discovered, that has been conjectured in [10]

based on a saddle point approximation.7 The chirality distribution, displayed in figure 8b,

scales to a quite good approximation as P (χ) ∼ e−3
√

χ. In the present case the behaviour

is different, especially because the distribution has two parts that scale differently. The

7An analysis of the mean chirality distribution based on explicit, computer-generated data can be found

in [14]. We will use this data, which is more accurate then the estimate of [10], to compare with the present

case.
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Figure 8: Frequency distribution of models with mean chirality χ, as defined in (6.6), for the

present Z6 case (a) to be compared with the result for Z2×Z2 (b).

first part goes roughly like e−(χ2), while the second part scales like e−χ.

6.5 Standard model configurations

In the following we are going to focus our analysis on a special subclass of models, namely

those which contain the gauge group and the chiral matter content of the standard model.

To be precise, we should speak about the MSSM here, since all our models are N = 1

supersymmetric.

In order to simplify the analysis we use the term “standard model” in a very broad

sense. In this section a standard model refers to a consistent solution which contains at

least the gauge group and the chiral matter content of the MSSM. This means that there

always exists a hidden sector, containing additional gauge groups and chiral matter. This

is actually not necessarily bad for phenomenology, since in the end we need a mechanism to

break supersymmetry, which can be nicely accomplished using a mediation through hidden

sector fields.

Concerning so-called “chiral exotics”, i.e. matter that transforms non trivially under

one of the gauge groups of the standard model, we will distinguish three cases to make

our results comparable with the literature. Case (i) will have no restrictions on exotic

matter at all. In case (ii) we forbid all exotic matter with the exception of bifundamental

representations of the SU(2) group of the standard model and an additional U(1). These

models are those that have been considered in [22] and might be of phenomenological

relevance, since the bifundamentals can be interpreted as supersymmetric Higgs particles.

However, since they do not transform under the same U(1) as the weak doublets, it should

be expected that the Yukawa couplings will be non-standard. In the most restrictive case

(iii) we do not allow for any exotic matter at all.
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Figure 9: Distributions of the probability to find models with the gauge group of the standard

model and g generations of the chiral matter content. figure (a) shows the results without any

restrictions on chiral exotics, while in (b) the amount of bifundamental matter has been restricted

either to maximally one pair transforming in the SU(2) of the standard model (red bars on the left)

or to no additional chiral matter at all (blue bars on the right).

As has been shown in [22], standard model configurations can only occur if the number

of stacks is five or greater. The maximum number of stacks is nine, since models with more

stacks do not support an SU(3) gauge group. To simplify the analysis we will restrict

ourselves to a special type of embedding of the standard model gauge group and chiral

matter, namely the one introduced in section 3.5.

6.5.1 Number of generations

At this point we leave the number of generations of quarks and leptons as a free parameter.

In figure 9 the frequency distribution of standard models with different numbers of families

is shown. In figure 9a we allowed all solutions with the gauge group and the chiral matter

content of the standard model, while in figure 9b we imposed additional constraints to

exclude models with chiral exotics, as outlined above.

Models with more then two generations have only been found in the cases (i) and (ii),

which allow for some amount of non-standard matter. In particular, there are ≈ 5.7 × 106

solutions with three generations. These models all contain five stacks of branes and are of

type (ii), containing one pair of bifundamental matter that transforms in the SU(2) of the

standard model gauge group and the U(1) coming from the additional fifth brane. The

models are of a type similar to the ones described in [22] and contain those as special cases.

We also confirm the statement of that work, that such models can only exist for the AAA

geometry.
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matter intersection SU(3)a × SU(2)b Qa Qb Qc Qd Qe QY

QL Iab′ = −3 (3,2) −1 −1 0 0 0 1
6

UR Iac = 3 (3,1) 1 0 −1 0 0 −2
3

DR Iac′ = 3 (3,1) 1 0 1 0 0 1
3

L Ibd′ = 3 (1,2) 0 1 0 1 0 −1
2

ER Icd = 3 (1,1) 0 0 1 −1 0 1

NR Icd′ = −3 (1,1) 0 0 −1 −1 0 0

Ibe = 3 (1,2) 0 1 0 0 −1 0

Ibe′ = 3 (1,2) 0 1 0 0 1 0

Table 4: Chiral spectrum of one of the models with gauge group SU(3) × SU(2) × U(1)5 that

contains the chiral matter spectrum of the standard model. QY is the hypercharge, realised as a

combination of all U(1) factors. Intersection numbers that are not listed are zero. Note the explicit

appearance of right-handed neutrinos (NR).

6.5.2 Spectra

As already mentioned above, we find the spectrum described in [22]. It can be described

by the following cycles for the five brane stacks,

πa =
1

2
(ρ1 + ρ2 + ε1 − 2ε̃1 − 2ε2 + ε̃2 + ε5 − 2ε̃5) ,

πb =
1

2
(ρ1 + ρ2 − ε1 + 2ε̃1 − 2ε2 + ε̃2 − ε5 + 2ε̃5) ,

πc =
1

2
(ρ1 + ρ2 + 3ε2 − 3ε̃2 − ε4 − ε̃4 + ε5 + ε̃5) ,

πd =
1

2
(ρ1 + ρ2 − ε1 + 2ε̃1 + 2ε2 − ε̃2 − ε5 + 2ε̃5) ,

πe =
1

2
(ρ1 + ρ2 + 3ε2 − 3ε̃2 + ε4 + ε̃4 − ε5 − ε̃5) .

The chiral spectrum is given in table 4.

In addition we find several variations of this configuration, all very similar in structure.

The difference between all of these models is only given by the explicit realisation in terms of

wrapping numbers. Furthermore the left-handed quarks might be realised through Iab = −3

and Iab′ vanishing. However, this is only a technical detail and does not change the general

setup of the model, which can therefore be seen as the unique construction to obtain a

standard model spectrum on this particular orbifold.

6.5.3 Hidden sector

The hidden sector of the standard models is generically very small. This is in sharp contrast

to the models on the Z2×Z2 orbifold, where we found quite large hidden sectors with a

distribution of gauge groups that turned out to be almost identical to the distribution in

the full set of models [11]. The reason for this is that the number of stacks in the present

case is restricted to a maximum of nine, and the tadpole equations limit the total rank to

be lower than or equal to twelve (cf. section 6.3.1).
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If we restrict our attention to the group of models which are most interesting from a

phenomenological point of view, namely the three generation models, we find that they only

occur in configurations with five stacks of branes. In this case the “hidden sector” consists

only of one U(1) gauge factor and in addition we always have chiral matter transforming

under this U(1) and the SU(2) group of the standard model.

7. Conclusions and outlook

In this work we have performed a complete analysis of type II intersecting D-brane models

on the T 6/Z6 orientifold. We found that there exist 3.4 × 1028 solutions in total, out of

which 5.7× 106 contain the gauge group and chiral matter content of the standard model.

We therefore obtained a probability of 1.7×10−22 to find an MSSM-like vacuum, a number

considerably lower then the value of 10−9 that has been calculated in the case of Z2×Z2

orientifolds in [11].

The distribution of gauge groups and chiral matter in the full set of solutions has

been analysed and we compared the results with those from a similar study of Z2×Z2

models. Similar frequency distributions of single gauge group factors have been found, but

the distribution of the total rank of the gauge group and of the chiral matter content are

quite different. This has been explained by the fact that the branes considered in this

work are actually fractional branes that wrap not only torus cycles, but generically also

exceptional cycles around fixed points of the orbifold. Since there exists a large number of

possibilities to combine these cycles, the number of solutions is considerably increased and

the statistical distributions are altered significantly compared to the Z2×Z2-case, in which

fractional branes have not been considered.

To obtain the full statistics, a method based on the choice of randomly chosen subsets

of the full solution space has been used. Therefore our results are not exact, but come with

a statistical error, which is however very small and always below 1%.

Concerning future directions, it would certainly be very interesting to compare our

results with other string compactifications that use different setups. In particular a better

comparison with the heterotic landscape [20, 21] and the statistics of M-theory vacua [32]

would be desirable. Comparing our results with the extensive analysis of Gepner mod-

els [17 – 19] would also be very interesting, although in this case the analysis is complicated

by the fact that we are considering only one particular geometry over a wide range of

(untwisted) moduli here, whereas the analysis in the works cited above has been done for

a very large set of different geometries at a particular point in moduli space. Moreover the

Gepner model statistic considers only models which resemble the standard model gauge

group. Nevertheless we hope to come back to this issue in the future.

On a more technical level, our analysis of solutions that resemble properties of the

standard model could be improved. Since we discussed only one possible embedding there

might be more possible realisations with interesting phenomenological features, although

most of the embeddings used in different contexts will not work due to the fact that the

number of symmetric and antisymmetric representations has to be equal.
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Another extension of this work concerns the inclusion of fluxes. In a naive way this can

be done easily by considering a lowered orientifold charge, as this would generically be the

effect of switching on three-form flux. However, to incorporate the most general NSNS–

and RR-fluxes into an orientifold setup, it seems very likely that the simple mathematical

formalism used in this article has to be considerably extended.
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supersymmetric D-brane models, Nucl. Phys. B 713 (2005) 83 [hep-th/0411173].

[11] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst and T. Weigand, One in a billion:
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